Clean Energy Sources

Wind Energy

Hydro-Energy

Bio-Energy

Solar-Energy
Fossil fuel energy will soon meet its end, while world energy consumption is expected to rise by more than 50% over the next two decades.

- It cannot be reproduced (Finite & Non-renewable).
- It releases waste products to the environment.

Alternative renewable energy sources are in increasing demand.
Wind and Hydro Energy
and their Applications

Prof. A. Atputharajah¹, Dr. A. Thevakaran²
and Ms. S. Vinothine¹

Department of Electrical and Electronic Engineering¹ and
Department of Physics², University of Jaffna

atpu@eng.jfn.ac.lk, atheva79@yahoo.com, svinothine@eng.jfn.ac.lk

March 2018
Increasing load in Sri Lanka

- Clean energy sources (16%)
 - Solar
 - Wind
 - Falling, flowing water
 - Biomass
 - Wave Energy

- Non-renewable (84%)
 - Oil, Natural gas
 - Coal, Nuclear power

Consumption Share among Different Consumer Categories
Present Status of Clean Energy Development (as at 31/07/2017)

http://www.ceb.lk/do-business-with-us/#tab-1439815407733-3-3

<table>
<thead>
<tr>
<th>Year</th>
<th>Capacity (MW)</th>
<th>Cumulative Number of Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>148</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>167</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>182</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>201</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>213</td>
<td></td>
</tr>
</tbody>
</table>

115 121 165 188 222 257 320 363 431 457 512 558
History of Wind Power

- We've used the wind as an energy source for a long time.
- The Babylonians and Chinese were using wind power to pump water for irrigating crops 4,000 years ago, and sailing boats were around long before that.
- Wind power was used in the Middle Ages, in Europe, to grind corn, which is where the term "windmill" comes from.
- Electricity generation by using wind turbine invented by Scottish Eng James Blyth.
How the Wind Generates?

- The Sun heats our atmosphere unevenly, so some patches become warmer than others.
- These warm patches of air rise, other air blows in to replace them - and we feel a wind blowing.
- Wind energy is an indirect form of Solar energy
- Wind turbines are used to convert kinetic energy of the wind in to usable form of Mechanical energy
Available Energy in the wind

Wind can reach much higher power densities:

• 10 kW/m² during a violent storm.
• over 25 kW/m² during a hurricane.
• gentle breeze of 5 m/s has a power density of only 0.075 kW/m². maximum terrestrial solar irradiance of about 1 kW/m².
Available wind resources in Sri Lanka:

Regions with Mean Annual Wind Speed > 7.0 m/s at 50m above Ground Level are marked in colour
Simple technique used for electricity generation

Inducing an *e.m.f* in a conductor
Possible wind turbine types

Horizontal-axis Wind Turbines (HAWT) Vertical-axis Wind Turbines (VAWT)

Source: SEA Presentation by Mr. Harsha Wickramasinghe
Details components inside Wind Turbine

Source: SEA Presentation by Mr. Harsha Wickramasinghe
Advantages to Wind power

• Wind is free, wind farms need no fuel.

• Produces no waste or greenhouse gases.

• The land beneath can usually still be used for farming.

• Wind farms can be tourist attractions.

• A good method of supplying energy to remote areas.
Disadvantages of Wind Power

• The wind is not always predictable some days have no wind.

• Suitable areas for wind farms are often near the coast, where land is expensive.

• Some people feel that covering the landscape with these towers is unsightly.

• Can kill birds - migrating flocks tend to like strong winds. Splat!

• Can affect television reception if you live nearby.

• Noisy. A wind generator makes a constant, low, "swooshing" noise day and night.
Water cycle as a great big heat engine

Diagram showing the water cycle with stages such as condensation, deposition, sublimation, precipitation, evaporation, infiltration into soil, underground flow, reservoir, dam, hydroelectric plant, and ocean.
Hydroelectricity

• A dam is built to trap water, usually in a valley where there is an existing lake.
• Water is allowed to flow through tunnels in the dam, to turn turbines and thus drive generators.
• Hydro-electricity provides 20% of the world’s power
Convert Potential Energy of Water Into Kinetic Energy to Run a Generator

- Potential Energy \rightarrow Kinetic Energy
 - $mgh = \frac{1}{2}mv^2$
 - h is called the “head” of the dam

- Modern hydroelectric plants convert $\sim 90\%$ of PE into electricity
Bioenergy and its application

Dr. B. Ketheesan¹ and Prof. Meena Senthilnanthananan²

Dept. of Civil Engineering¹ and Dept. of Chemistry ²

University of Jaffna

kethees@eng.jfn.ac.lk¹, meena.senthilnanthananan@gmail.com²

March 2018

Collaborators

Sponsored by

Norway in Sri Lanka

Royal Norwegian Embassy in Colombo
What is Biomass?

Organic material which has stored sunlight in the form of chemical energy

Bioenergy

- Alternative to fossil fuel to meet the increasing energy demand
- Refers to renewable energy produced from biomass
- Includes solid, liquid, or gaseous fuels
- Helps to reduce greenhouse gas emissions and minimize the carbon footprint

- Sugar
- Starch
- Cellulose
- Hemi-cellulose
- Lipids

Energy crops
Agricultural and forestry residues
Processing wastes
Agricultural and Forestry Residue

Corn Stover

Rice/wheat Straw

Wood chip

Husk/shell/peel from seeds
Processing Wastes

Municipal solid waste

Animal waste

Food waste
Biomass to Bioenergy Conversion Technologies

- Biomass
 - Thermochemical Route
 - Pyrolysis
 - Upgrading Bio Oil
 - Transport Fuel
 - Hydrothermal Liquefaction
 - Gasification
 - Fischer-Tropsch Synthesis
 - Synthetic transport Fuel
 - Chemical/Biochemical route
 - Hydrolysis
 - Fermentation
 - Liquid Ethanol
 - Transesterification
 - Biodiesel
Thermochemical Route

• Combustion
• Gasification
• Pyrolysis
• Hydrothermal Liquefaction
• Fischer-Tropsch process
Gasification

- Solid biomass breaks down at high temperature (750-1100 °C) to form gaseous mixture
- Reaction takes place with limited amount of oxygen
- Gaseous mixture includes H₂, CH₄, CO, and CO₂
- Gaseous mixture can be
 - burned directly for heating or cooking
 - converted to electricity via an internal combustion engine
 - used as a syngas (CO and H₂ mixture) for producing higher quality fuels or chemical products such as hydrogen or methanol
Pyrolysis

Rapid thermal decomposition of biomass in the absence of oxygen. The end products are

- Bio-oil (dark-brown oil that can be upgraded to transportation fuel)
- Biochar (fine-grained charcoal high in organic carbon and can be used as a soil amendment)
- Gases including methane, hydrogen, carbon monoxide, and carbon dioxide
Biochemical Route

• Microbial Fermentation
 • Bioethanol/Butanol/Propanol production

• Transesterification
 • Biodiesel production

• Anaerobic digestion
 • Biomethane production
 • Biohydrogen production
Bioethanol

• The most common type of biofuel
• Bioethanol
 • Produced by fermenting any biomass high in carbohydrates
 • Produced from sugar (feedstock: sugar cane, sugar beet and, sweet sorghum)
 • Produced from starch (feedstock: maize, wheat and cassava)

Biochemical production of Ethanol

Sugar

• Catalysed by enzymes
• Sucrose/starch + H₂O

 Ethanol + CO₂

Glucose

Yeast addition
Anaerobic Digestion

- Conversion of biomass to biomethane
- Methane can be used in internal combustion engine for producing electricity
A simple Household Anaerobic Digester
Bio-diesel

• Fuel derived from vegetable oils and animal fats through transesterification
• A biodegradable transportation fuel for use in diesel engines
Bio-fuels

1st Generation
• Derived from sugar, starch, vegetable oil originating from food source
• Fuel vs food controversy

2nd Generation
• Derived from biomass comprised of the residual non-food parts of current crops
• Crops that are not used for food purposes and industry wastes e.g. switch grass, wood chips, skins and pulp from fruit pressing etc.

3rd Generation: Algal biofuel
• Carbon neutrality
• Renewability
• Does not compete with food crops
• Minimum modification to diesel engine
Bio-refinery Concept

• A bio-refinery involves the co-production of a spectrum of bio-based products (food, feed, materials, chemicals) and energy (fuels, power, heat) from biomass.

• A bio-refinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and value-added chemicals from biomass.

• The bio-refinery concept is analogous to today’s petroleum refinery, which produces multiple fuels and products from petroleum.
Solar Energy and its application

Prof. P. Ravirajan1 and Dr. R. Shivatharshini2

Dept. of Physics1 and Dept. of Chemistry 2

University of Jaffna

pravirajan@univ.jfn.ac.lk1, srtsharsha12@gmail.com2

March 2018

Collaborators

Sponsored by

Norway in Sri Lanka

Royal Norwegian Embassy in Colombo
Solar energy

Solar energy originates with the thermonuclear fusion reactions occurring in the Sun which continuously radiates enormous amounts of solar energy at wavelengths that cover the UV, VIS and IR bands.

The Sun

Solar energy received by the earth ~100 000 TW
~over 66,000 times greater than the annual world wide electricity consumption (1.5 TW)

Applications of Solar energy:
- **Thermal energy conversion (Solar Thermal)**, Eg. Solar cooker, water heater, dryer, desalination etc
- **Photo-energy conversion (Solar PV)**: Eg. Solar cells
Application of Solar Energy

Solar Thermal energy conversion

Solar desalination

Solar Cooker

Solar water Heater

Solar dryer
Application of Solar Energy

Solar Photovoltaic (PV) energy conversion

Advantages

✓ convert light energy directly into electricity.
✓ do not require any cooling water system.
✓ require little maintenance.
✓ have no moving parts.
✓ are silent in operations.
✓ are pollution free (Green) energy sources.

Moreover, Energy from the sun is Abundant.
What is Solar cells?
Solar cells are photovoltaic cells that convert the photons of sunlight into electrical power.
Operating principle of Solar cells

- The absorption of light, generating electron-hole (e-h) pairs
- The separation of charge carriers of opposite types
- The separate extraction of those carriers (e, h) to an external circuit
Evaluating Solar cells

\[\text{FF - Fill factor} = \frac{P_{\text{max}}}{J_{\text{SC}} \cdot V_{\text{OC}}} \]

- \(V_{\text{OC}} \) - Open circuit voltage which is the maximum voltage available from a solar cell, and this occurs at zero current (i.e., when the solar cell is open circuited).
- \(J_{\text{SC}} = \frac{I_{\text{SC}}}{A} \), where \(A \) is the area of the solar cell and \(I_{\text{SC}} \) is the short-circuit current which is the current through the solar cell when the voltage across the solar cell is zero (i.e., when the solar cell is short circuited).

\[\text{Efficiency of a solar cell} \quad \eta = \frac{P_{\text{max}}}{P_{\text{in}}} \times 100\% = \frac{J_{\text{SC}} \cdot V_{\text{OC}} \cdot \text{FF}}{P_{\text{in}}} \times 100\% \]
Application of Solar cells
Required components for installation of a solar array

- Solar Array
- Batteries
- Charging controller
- Inverter
- Bulbs
- Wires

Components in a solar array
PV “learning curve”

Need new technology for making cheap solar cells

Nanotechnology may bring the cost down!
Why Nanostructured Solar Cell?

Advantages

- Low cost (<1 US$(LKR 155)/W)
- Low weight
- Low material requirements
- Ease of manufacture
- Mechanical flexibility
- Large field of application

However, there are constraints such as poor stability and low efficiency for commercialisation.
What is nanotechnology?

Technology deals with materials in nanoscale.

Surface area of the particles tremendously increases when the size of particles decreases.

Efficiency increases with decreasing size of the particles!
Nanomaterials in Clean Energy Application

Solar Cells

(a) Polymer blend solar cells

(b) Dye Sensitized Solar Cells

dye layer electrolyte platinum layer

glass glass seal

TiO2 film SnO2 layer

Water splitting

Photosynthesis

Artificial Photosynthesis (Water splitting)

\[\text{H}_2 + \text{O}_2 \rightarrow \Delta G^0 = 237 \text{kJ/mol} \]
How to make Nanostructured Solar Cells?

(a) TiO$_2$ nanoparticles
(b) Depositing TiO$_2$ paste
(c) Burning the organics
(d) Sock TiO$_2$ film in dye solution
(e) Inserting electrolyte
(f) (f) [Diagram]
(g) Testing a solar cell
This outreach activity was sponsored by

ROYAL NORWEGIAN EMBASSY
COLOMBO

Thank you

organized by

http://www.thejsa.org/
http://project.jfn.ac.lk/hrncet/