Educational Training on Clean Energy Technologies to School Students in Jaffna District

Clean Energy Sources

Wind Energy

Hydro-Energy

Bio-Energy

Solar-Energy

Why Clean Energy Sources ?

Fuel Depletion-A Global Threat

World energy consumption

- Fossil fuel energy will soon meet its end, while World energy consumption is expected to rise by more than 50 % over the next two decades.
- ≻It cannot be reproduced (Finite & Non renewable).
- >It releases waste products to the environment.
- >Alternative renewable energy sources are in increasing demand.

Educational Training on Clean Energy Technologies to School Students in Jaffna District

Wind and Hydro Energy and their Applications

Prof. A. Atputharajah¹, Dr. A. Thevakaran² and Ms. S. Vinothine¹

Department of Electrical and Electronic Engineering¹ and Department of Physics², University of Jaffna

atpu@eng.jfn.ac.lk, atheva79@yahoo.com, svinothine@eng.jfn.ac.lk March 2018

Increasing load in Sri Lanka

Biomass

Wave Energy

Consumption Share among Different Consumer Categories

Demand (GWh)

12000

11000

10000

9000

□ Industrial

Present Status of Clean Energy Development (as at 31/07/2017)

http://www.ceb.lk/do-business-with-us/#tab-1439815407733-3-3

History of Wind Power

- We've used the wind as an energy source for a long time.
- The Babylonians and Chinese were using wind power to pump water for irrigating crops 4,000 years ago, and sailing boats were around long before that.
- Wind power was used in the Middle Ages, in Europe, to grind corn, which is where the term "windmill" comes from.
- Electricity generation by using wind turbine invented by Scottish Eng James Blyth.

How the Wind Generates?

- The Sun heats our atmosphere unevenly, so some patches become warmer than others.
- These warm patches of air rise, other air blows in to replace them and we feel a wind blowing.
- Wind energy is an indirect form of Solar energy
- Wind turbines are used to convert kinetic energy of the wind in to usable form of Mechanical energy

Available Energy in the wind

$$P_0 = \frac{1}{2} (\rho A U_o) U_0^2 = \frac{1}{2} \rho A U_0^3$$

Wind can reach much higher *power densities* :

- 10 kW/m² during a violent storm.
- over 25 kW/m² during a hurricane.
- gentle breeze of 5 m/s has a power density of only 0.075 kW/m².

maximum terrestrial solar irradiance of about 1 kW/m².

Available wind resources in Sri Lanka:

RegionswithMeanAnnual Wind Speed > 7.0m/s at 50m above GroundLevel are marked in colour

Simple technique used for electricity generation

Inducing an *e.m.f* in a conductor

Possible wind turbine types

Horizontal-axis Wind Turbines (HAWT)

Vertical-axis Wind Turbines (VAWT)

Source: SEA Presentation by Mr. Harsha Wickramasinghe

Details components inside Wind Turbine

Source: SEA Presentation by Mr. Harsha Wickramasinghe

Advantages to Wind power

- Wind is free, wind farms need no fuel.
- Produces no waste or greenhouse gases.
- The land beneath can usually still be used for farming.
- Wind farms can be tourist attractions.
- A good method of supplying energy to remote areas.

Disadvantages of Wind Power

- The wind is not always predictable some days have no wind.
- Suitable areas for wind farms are often near the coast, where land is expensive.
- Some people feel that covering the landscape with these towers is unsightly.
- Can kill birds migrating flocks tend to like strong winds. Splat!
- Can affect television reception if you live nearby.
- Noisy. A wind generator makes a constant, low, "swooshing" noise day and night.

Water cycle as a great big heat engine

Hydroelectricity

- A dam is built to trap water, usually in a valley where there is an existing lake.
- Water is allowed to flow through tunnels in the dam, to turn turbines and thus drive generators.
- Hydro-electricity provides 20% of the world's power

How does 'Hydroelectric dams' produce electricity?

Convert Potential Energy of Water Into Kinetic Energy to Run a Generator

Potential Energy → Kinetic Energy

• mg $h = \frac{1}{2}mv^2$

- *h* is called the "head" of the dam
- Modern hydroelectric plants convert ~90% of PE into electricity

Bioenergy and its application

Dr.B.Ketheesan¹ and Prof.Meena Senthilnanthanan²

Dept. of Civil Enineering¹ and Dept. of Chemistry ² University of Jaffna

kethees@eng.jfn.ac.lk¹, meena.senthilnanthanan@gmail.com²

March 2018

What is Biomass?

Organic material which has stored sunlight in the form of chemical energy **Bioenergy**

- Alternative to fossil fuel to meet the increasing energy demand
- Refers to renewable energy produced from biomass
- Includes solid, liquid, or gaseous fuels
- Helps to reduce greenhouse gas emissions and minimize the carbon footprint

- Starch
- Cellulose
- Hemi-cellulose
- Lipids

Energy Crops

Sunflower

Rapeseed

Switch grass

Corn

Sweet sorghum

Soybeans

Sugarcane

Microalgae

Agricultural and Forestry Residue

Corn Stover

Wood chip

Rice/wheat Straw

Husk/shell/peel from seeds

Processing Wastes

Municipal solid waste

Animal waste

Food waste

Biomass to Bioenergy Conversion Technologies

Thermochemical Route

- Combustion
- Gasification
- Pyrolysis
- Hydrothermal Liquefaction
- Fischer-Tropsch process

Gasification

- Solid biomass breaks down at high temperature (750-1100 °C) to form gaseous mixture
- Reaction takes place with limited amount of oxygen
- Gaseous mixture includes H₂, CH₄, CO, and CO₂
- Gaseous mixture can be
 - burned directly for heating or cooking
 - converted to electricity via an internal combustion engine
 - used as a **syngas** (CO and H_2 mixture) for producing higher quality fuels or chemical products such as hydrogen or methanol

Pyrolysis

Rapid thermal decomposition of biomass in the absence of oxygen. The end products are

- Bio-oil (dark-brown oil that can be upgraded to transportation fuel)
- Biochar (fine-grained charcoal high in organic carbon and can be used as a soil amendment)
- Gases including methane, hydrogen, carbon monoxide, and carbon dioxide

Biochemical Route

Microbial Fermentation

- Bioethanol/Butanol/Propanol production
- Transesterification
 - Biodiesel production
- Anaerobic digestion
 - Biomethane production
 - Biohydrogen production

Bioethanol

- The most common type of biofuel
- Bioethanol
 - Produced by fermenting any biomass high in carbohydrates
 - Produced from sugar (feedstock: sugar cane, sugar beet and, sweet sorghum)
 - Produced from starch (feedstock: maize, wheat and cassava)

Biochemical production of Ethanol

cose

Sugar

- Catalysed by enzymes
- Sucrose/starch + H₂O

Anaerobic Digestion

- Conversion of biomass to biomethane
- Methane can be used in internal combustion engine for producing electricity

A simple Household Anaerobic Digester

Bio-diesel

- Fuel derived from vegetable oils and animal fats through transesterification
- A biodegradable transportation fuel for use in diesel engines

Bio-fuels

1st Generation

- Derived from sugar, starch, vegetable oil originating from food source
- Fuel vs food controversy

2nd Generation

- Derived from biomass comprised of the residual non-food parts of current crops
- Crops that are not used for food purposes and industry wastes e.g. switch grass, wood chips, skins and pulp from fruit pressing etc.

3rd Generation: Algal biofuel

- Carbon neutrality
- Renewability
- Does not compete with food crops
- Minimum modification to diesel engine

Bio-refinery Concept

- A bio-refinery involves the co-production of a spectrum of bio-based products (food, feed, materials, chemicals) and energy (fuels, power, heat) from biomass
- A bio-refinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and value-added chemicals from biomass.
- The bio-refinery concept is analogous to today's petroleum refinery, which produces multiple fuels and products from petroleum

Biorefinery Concept

Solar Energy and its application

Prof.P.Ravirajan¹ and Dr.R.Shivatharshini²

Dept. of Physics¹ and Dept. of Chemistry ²

University of Jaffna

pravirajan@univ.jfn.ac.lk¹, srtharsha12@gmail.com²

March 2018

Solar energy

Solar energy originates with the thermonuclear fusion reactions occurring in the Sun which continuously radiates enormous amounts of solar energy at wavelengths that cover the UV, VIS and IR bands.

Application of Solar Energy

Solar Thermal energy conversion Solar Energy **Solar desalination** Steam Solar Collector Thermocompressor Extracted Vapor Salt Salt Water Water Condense Distillate Salt Brine Wate Water Water **Solar Cooker** Condensate Water

Solar water Heater

Solar dryer

Application of Solar Energy

Solar Photovoltaic (PV) energy conversion

Advantages

- ✓ convert light energy directly into electricity.
- \checkmark do not require any cooling water system.
- ✓ require little maintenance.
- \checkmark have no moving parts.
- \checkmark are silent in operations.
- ✓ are pollution free (Green) energy sources.

Moreover, Energy from the sun is Abundant.

What is Solar cells?

Solar cells are photovoltaic cells that convert the photons of sunlight into electrical power.

Operating principle of Solar cells

е

- The **absorption of light**, generating electron-hole (*e*-*h*) pairs
- The **separation of charge carriers** of opposite types
- The separate extraction of those carriers (*e*, *h*) to an external circuit

Evaluating Solar cells

- V_{oc} Open circuit voltage which is the maximum voltage available from a solar cell, and this occurs at zero current (i.e., when the solar cell is open circuited).
- $J_{sc} = \frac{I_{sc}}{A}$, where A is the area of the solar cell and I_{sc} is the short-circuit current which is the current through the solar cell when the voltage across the solar cell is zero (i.e., when the solar cell is short circuited).

Application of Solar cells

Required components for installation of a solar array

Solar Array

- > Batteries
- Charging controller
- Inverter
- Bulbs
- ➢ Wires

Components in a solar array

A typical module has 36 cells in series

PV "learning curve"

Why Nanostructured Solar Cell ?

Advantages

- ✓ Low cost (<1 US\$(LKR 155)/W)
- ✓ Low weight
- ✓ Low material requirements
- ✓ Ease of manufacture
- ✓ Mechanical flexibility
- ✓ Large field of application
- However, there are constrains such as poor stability and low efficiency for commercialisation.

What is nanotechnology ?

Technology deals with materials in nanoscale.

Surface area of the particles tremendously increases when the size of particles decreases

Efficiency increases with decreasing size of the particles!

Nanomaterials in Clean Energy Application

Energy

H₂O

Solar Cells

(a) Polymer blend solar cells

Water splitting

Bee Be

Chemical energy

△G⁰=237kJ/mol

How to make Nanostructured Solar Cells?

TiO₂ nanoparticles

Depositing TiO₂ paste

Burning the organics

Socking TiO₂ film in dye solution

Inserting electrolyte

Testing a solar cell

Car charging

Car Navigator

This outreach activity was

sponsored by

ROYAL NORWEGIAN EMBASSY COLOMBO

Thank you

organized by

http://www.thejsa.org/ http://project.jfn.ac.lk/hrncet/

Bus station

Yacht / Boat

Houses

